RTB竞价策略学习

背景

近一年的工作基本是围绕着广告ctr/cvr模型优化展开的,但是对竞价广告整体框架还是缺乏了解,最近准备学习一下RTB相关的内容,笔记主要围绕着Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting 这篇文章学习

Bid Landscape Forecasting

在RTB中,作为广告主(或者DSP方)而言,关键问题其实是2个,一个是是否应该出价,第二个是应该出多少价,对于第一个问题,一般可以根据广告素材的预估ctr/cvr等判断预期收益决定,对于第二个问题则比较复杂一点;因为在RTB中,只有竞价成功了才能知道真实的计费是多少(对于一价而言就是bid,对于二价而言则需要看其他的报价),由于在每次报价之前不知道其他的报价,因此需要根据历史的一些统计经验值或者模型来预估本次出价,这个就是bid landscape forcasting.

了解几个基本的概念:

winning probability: 给定出价 b x b_x bx 和广告特征 x x x 单次请求赢得展示的胜率 P ( w i n ∣ x , b x ) P(win|x,b_x) P(winx,bx)
q x ( x ) ≡ P ( w i n ∣ x , b x ) ⋅ p x ( x ) q_x(x) \equiv P(win|x,b_x) \cdot p_x(x) qx(x)P(winx,bx)px(x)
其中 q x ( x ) q_x(x) qx(x) 表示广告得到展示的概率, p x ( x ) p_x(x) px(x) 表示发起竞价的概率, P ( w i n ∣ x , b x ) P(win|x,b_x) P(winx,bx) 表示竞价的胜率

假设我们已经知道市场上出价z的分布 P z ( z ) P_z(z) Pz(z) ,那么胜率可以描述为:
w ( b x ) ≡ ∫ o b x p z ( z ) d z w(b_x) \equiv \int_o^{b_x}p_z(z)dz w(bx)obxpz(z)dz

几种常见的bid landscape forecasting
Tree-based log-normal model

这种方法来自Yahoo的一篇文章Bid Landscape Forecasting in Online Ad Exchange Marketplace,方法是对于adset级别的广告素材,先将历史统计的竞价信息按照特征树的方式先做一个树路径划分,每个树的路径的叶子节点值是match这个特征路径的bid,文章对这种树结构做了一个优化:对于不存在的节点将以*补充,如下图所示:
在这里插入图片描述
特征树划分好之后,使用GBDT去拟合历史报价,从而学习到每条路径的预估bid值,当一个新的request来的时候,则可以根据match到路径的预估值和历史报价进行本次报价预估均值和标准差。在获取到每个adset级别的均值 E[s] 和标准差 std[s] 之后,文章假设每个adset的bid分布是对数正态分布:在这里插入图片描述
可以求解到在这里插入图片描述
对于campaign级别的竞价,paper假设一个campaign的bid是这个campaign下面每个adset的混合分布:在这里插入图片描述其中在这里插入图片描述

censored linear regression

线性拟合方法就比较简单,对于广告素材 x ,使用一个参数 \beta 来拟合出价bid: z ^ = β x \hat{z} = \beta x z^=βx , Pre- dicting winning price in real time bidding with censored data 这篇paper用下面的似然函数来建模:

本质上是对于win的事件,让 β x \beta x βx 尽量去拟合bid,对于lose的事件,让 β x \beta x βx 尽量出价比bid高点

survival model

survival model是一种基于统计的预估出价(二价)分布模型,实现步骤如下
将所有出价历史按照bid从小到大排序成 < b i , w i , z i > i = 1... N <b_i,w_i,z_i>_{i=1...N} <bi,wi,zi>i=1...N ,其中 b i b_i bi 是第i次的出价, w i w_i wi表示是否赢得此次出价, z i z_i zi表示本次胜出的价格
将上述的数据按照bid从小到大转换成 < b j , d j , n i > j = 1... M <b_j,d_j,n_i>_{j=1...M} <bj,dj,ni>j=1...M 形式,其中dj表示胜出价为 b j − 1 b_{j}-1 bj1胜出的次数, n j n_j nj表示出价为 b j b_j bj-1不能胜出的次数,以下面示例图为例,当计算 b j b_j bj=3的时候,那么 d j d_j dj=1(wining_prirce为 b j b_j bj-1的胜出次数), n j n_j nj为4(出价为 b j b_j bj-1时候失败的次数)。本质上计算的是当bid增加一块钱(假设单位是元)胜出的概率为: d j n j \frac{d_j}{n_j} njdj ,对应的lose概率为 n j − d j n j \frac{n_j-d_j}{n_j} njnjdj
对于出价为 b x b_x bx,lose的概率为 l ( b x ) = ∏ b j < b x n j − d j n j l(b_x) = \prod_{b_j<b_x}\frac{n_j-d_j}{n_j} l(bx)=bj<bxnjnjdj,win的概率为 w ( b x ) = 1 − ∏ b j < b x n j − d j n j w(b_x) =1- \prod_{b_j<b_x}\frac{n_j-d_j}{n_j} w(bx)=1bj<bxnjnjdj
survival model示例

竞价策略优化

竞价策略主要针对广告需求方,根据每次请求的context(广告素材、用户行为等)判断需不需要出价以及出多少价,主要流程可以用下图描述:

和搜索广告不同的是,RTB是针对每次的展示竞价,而不是针对搜索关键词出价,因此RTB对广告主(或者DSP)来说,需要更实时且精准的预估.
RTB竞价策略通常包括两个部分:Utility Estimation和Cost Estimation。Utility Estimation一般指赢得这次展示的期望收益,比如点击率/转换率等;Cost Estimation则指的是赢得此次竞价需要的成本,可以用下图描述:
在这里插入图片描述

单广告计划bid optimisation
继续了解几个概念
  1. 给定市场出价概率密度分布Pz(z)和出价b,对应的胜率为 w ( b ) = ∫ 0 b p z ( z ) d z w(b)=\int_0^bp_z(z)dz w(b)=0bpz(z)dz
  2. 广告的预期回报为 u ( r ) u(r) u(r) , u ( r ) u(r) u(r)依赖具体的广告策略,如果广告希望回报是点击数,那么 u c l k ( r ) = r u_{clk}(r)=r uclk(r)=r ;如果广告希望回报是利润,每次点击的收益是 v v v,那么 u p r o f i t ( r , z ) = v r − z u_{profit}(r,z)=vr-z uprofit(r,z)=vrz
  3. cost(如果胜出了,需要花费的成本):
    对于一价广告, c ( b ) = b c(b)=b c(b)=b
    对于二价广告, c ( b ) = ∫ 0 b z p z ( z ) d z ∫ 0 b p z ( z ) c(b)=\frac{\int_0^bzp_z(z)dz}{\int_0^bp_z(z)} c(b)=0bpz(z)0bzpz(z)dz
  4. T T T: 广告计划的规则和生命周期决定的拍卖量
  5. B B B:广告计划的预算budget
Truth-telling bidding

true-telling bidding是只考虑竞价回报,而不考虑预算的场景,期望收益为
U p r o f i t ( b ( . ) ) = T ∫ r ∫ z = 0 b ( r ) u p r o f i t ( r , z ) p z ( z ) d z p r ( r ) d r = T ∫ r ∫ z = 0 b ( r ) ( v r − z ) p z ( z ) d z p r ( r ) d r ( 1 ) U_{profit}(b(.)) = T\int_r\int_{z=0}^{b(r)}u_{profit}(r,z)p_z(z)dzp_r(r)dr = T\int_r\int_{z=0}^{b(r)}(vr-z)p_z(z)dzp_r(r)dr (1) Uprofit(b(.))=Trz=0b(r)uprofit(r,z)pz(z)dzpr(r)dr=Trz=0b(r)(vrz)pz(z)dzpr(r)dr1
这个相当于是Lagrange无约束优化问题,直接对出价 b ( . ) b(.) b(.)求导
(1)式对 b(.) 求导得到: ( v r − b ( r ) ) ∗ p z ( b ( r ) ) ∗ p r ( r ) = 0 (vr-b(r))*p_z(b(r))*p_r(r)=0 (vrb(r))pz(b(r))pr(r)=0由此得到出价 b r = v r b_r = vr br=vr
Truth-telling bidding仅适用于不限budget以及不限拍卖量的情况

Linear Bidding

线性出价则简单的多,基本公式是
b l i n = ϕ v r b_{lin} = \phi vr blin=ϕvr
其中参数 ϕ \phi ϕ 是根据训练数据训练出来的值

预算约束下的bidding

在拍卖量T和预算B受约束的情况下,优化目标变成:
m a x b ( ) T ∫ r u ( r ) w ( b ( r ) ) p r ( r ) d r max_{b()} T\int_ru(r)w(b(r))p_r(r)dr maxb()Tru(r)w(b(r))pr(r)dr
s t : T ∫ r c ( b ( r ) ) w ( b ( r ) ) p r ( r ) d r = B ( 2 ) st: T\int_rc(b(r))w(b(r))p_r(r)dr=B (2) st:Trc(b(r))w(b(r))pr(r)dr=B2
显然,这是一个等式约束条件下lagrange优化问题,自然的,引入lagrange算子 λ \lambda λ
l ( b ( r ) , λ ) = T ∫ r u ( r ) w ( b ( r ) ) p r ( r ) d r − λ ( T ∫ r c ( b ( r ) ) w ( b ( r ) ) p r ( r ) d r − B ) l ( b ( r ) , λ ) = T ( ∫ r u ( r ) w ( b ( r ) ) p r ( r ) d r − λ ( ∫ r c ( b ( r ) ) w ( b ( r ) ) p r ( r ) d r ) + B T λ ) l(b(r),\lambda) = T\int_ru(r)w(b(r))p_r(r)dr - \lambda (T\int_rc(b(r))w(b(r))p_r(r)dr-B) l(b(r),\lambda) = T(\int_ru(r)w(b(r))p_r(r)dr - \lambda (\int_rc(b(r))w(b(r))p_r(r)dr)+\frac{B}{T}\lambda) l(b(r),λ)=Tru(r)w(b(r))pr(r)drλ(Trc(b(r))w(b(r))pr(r)drB)l(b(r),λ)=T(ru(r)w(b(r))pr(r)drλ(rc(b(r))w(b(r))pr(r)dr)+TBλ)
等价于优化
∫ r u ( r ) w ( b ( r ) ) p r ( r ) d r − λ ( ∫ r c ( b ( r ) ) w ( b ( r ) ) p r ( r ) d r ) + B T λ ( 3 ) \int_ru(r)w(b(r))p_r(r)dr - \lambda (\int_rc(b(r))w(b(r))p_r(r)dr)+\frac{B}{T}\lambda (3) ru(r)w(b(r))pr(r)drλ(rc(b(r))w(b(r))pr(r)dr)+TBλ3
求解过程:
b ( r ) b(r) b(r)求导值为0可得:
λ w ( b ( r ) ) ∂ c ( b ( r ) ∂ b ( r ) = ( u ( r ) − λ c ( b ( r ) ) ) ∂ ( w ( b ( r ) ) ) ∂ b ( r ) ( 4 ) \lambda w(b(r))\frac{\partial c(b(r)}{\partial b(r)} = (u(r)-\lambda c(b(r)))\frac{\partial(w(b(r)))}{\partial b(r)} (4) λw(b(r))b(r)c(b(r)=(u(r)λc(b(r)))b(r)(w(b(r)))4
令对 λ \lambda λ 求导值为0可得:
T ∫ r c ( b ( r ) ) w ( b ( r ) ) p r ( r ) d r = B ( 5 ) T\int_rc(b(r))w(b(r))p_r(r)dr=B(5) Trc(b(r))w(b(r))pr(r)dr=B5

  1. 对于一价场景
    c ( b ( r ) ) = b ( r ) c(b(r))=b(r) c(b(r))=b(r)
    假设初始 z z z服从 p z ( z ) = l ( l + z ) 2 p_z(z)=\frac{l}{(l+z)^2} pz(z)=(l+z)2l这一分布, l ( l + z ) 2 \frac{l}{(l+z)^2} (l+z)2l对应的原函数为 − l l + z -\frac{l}{l+z} l+zl
    同时假设 p z ( z ) p_z(z) pz(z) 服从均匀分布
    w ( b ( r ) ) = ∫ 0 b r p z ( z ) d z = b ( r ) l + b ( r ) w(b(r))=\int_0^{b_r}p_z(z)dz=\frac{b(r)}{l+b(r)} w(b(r))=0brpz(z)dz=l+b(r)b(r)

    带入4式和5式:
    λ b ( r ) l + b ( r ) = ( u ( r ) − λ b ( r ) ) l ( l + b ( r ) ) 2 T ∫ 0 1 b ( r ) b ( r ) b ( r ) + l ) d r = B \lambda \frac{b(r)}{l+b(r)} = (u(r)-\lambda b(r))\frac{l}{(l+b(r))^2} T\int_0^1b(r)\frac{b(r)}{b(r)+l})dr=B λl+b(r)b(r)=(u(r)λb(r))(l+b(r))2lT01b(r)b(r)+lb(r))dr=B
    由此求得:
    b o r t h b = u ( r ) l λ + l 2 − l b_{orthb}=\sqrt{\frac{u(r)l}{\lambda}+l^2}-l borthb=λu(r)l+l2 l
    同理,如果 p z z p_zz pzz 服从 1 l \frac{1}{l} l1 的分布,可最终得到 b ( r ) = r 3 B l T b(r) = r\sqrt{\frac{3Bl}{T}} b(r)=rT3Bl

  2. 对于二价场景
    c ( b ( r ) ) = ∫ 0 b ( r ) z p z ( z ) d z ∫ 0 b p z ( z ) c(b(r))=\frac{\int_0^{b(r)}zp_z(z)dz}{\int_0^bp_z(z)} c(b(r))=0bpz(z)0b(r)zpz(z)dz
    和上面相似的求解方法可以得到:
    b o r t b − l i n ( r ) = u ( r ) λ b_{ortb-lin}(r)=\frac{u(r)}{\lambda} bortblin(r)=λu(r)
    如果 p z z p_zz pzz 服从 1 l \frac{1}{l} l1 的分布,同时假设 p z ( z ) p_z(z) pz(z) 服从均匀分布
    类似的可以求解:
    b ( r ) = 2 r 3 B l 2 T b(r) = 2r^3\sqrt{\frac{Bl^2}{T}} b(r)=2r3TBl2

多广告计划bid optimisation (待续)
已标记关键词 清除标记
相关推荐
百度竞价推广营销策略与技巧 第一、明确的营销目的包括: 推广定位(要推品牌还是搞促销) 、目标受众(白领还是学生) 、传递的信息(产 品便宜还是质量 好) 、推广策略(要让公司网站获得更多的流量、或是注册、还 是带来更多的订单)几个方面,为推广活动制定一个大致的方向。 第二、关键词分为 4 个大类,各有不同用途: 品牌类:公司品牌或特有性质,如公司名称即拼音,网站域名,公司热线电话, 产品名称和型号等。用来保持已有用户或已有品牌倾向的潜在用户,防止竞争对 手通过购买自己的品牌词来抢夺客户。 细分产品类:不包含品牌的,带限定的产品词,如“音乐手机” “商务轿车”等。 这些关键词表明网民已有了比较明确的需求,是值得争取的潜在用户。 通用词:字数少,不包含品牌,被网民大量使用的搜索词,如“手机”“鲜花” 、 等。这些关键词表明网民有一些欲望和兴趣,但还不明确,他们中间有一些人是 可以争取的潜在客户。 人群词:与产品相关性小,但却是目标受众所表现出的主流兴趣点。如搜索“巧 克力”的网民非常有可能是“鲜花”的潜在客户,相关性强的竞争对手的品牌也 可以考虑。 第三、关键指标的策划和估算: 再拿手机网上商城为例, 由于预计 0.3%的访问者会交易, 平均交易额是 1000 元, 其中毛利 300 元,所以我们应该把平均转化价格 CPA 控制在 300 元以内, 即可以粗略推算每 1000 次点击可以
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页